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ABSTRACT 

This work includes a preliminary study of some microbial mats located in the Mediterranean region of the Iberian Penin- 
sula. The structure of these laminated communities has been studied through the combined use of light microscopy, scanning 
electron microscopy and pigment analysis. 

Al1 the mats studied were made up predominantly of cyanobacteria, with chlorophyll a as the main photosynthetic pigment. 
Coccoid cyanobacteria were the main organisms in mats with higher salinities. When salinity levels decreased, filamentous 
cyanobacteria became the principal mat-building organisms. In young mats, Spirulina was dominant, while in well developed 
mats, where Microcoleus was dominant, a purple layer with bacteriochlorophyll a was also present. 

INTRODUCTION 

It was more than a century and a half ago that stroma- 
tolites were first described (STEEL, 1825). These structu- 
res, defined as "organosedimentary structures produced by 
sediment trapping, binding, and/or precipitation as a result 
of the growth and metabolic activity of microorganisms, 
primarily by cyanobacteria" (MARGULIS et a l . ,  1986), 
are fundamental for a better understanding of microbial 
mats. 

Microbial mats have been described as stratified commu- 
nities of microorganisms that develop in the physico- 
chemical gradients established at the interfaces between 
water and solid substrates. These structures are composed 
prirnarily of phototrophic bacteria together with diverse 
microorganisms. They are frequently laminated due to 
variations of different parameters such as light, tempera- 
ture, salinity, etc. These laminations have different colors 
as a result of growth of phototrophs with different pigment 
composition, and thus, different patterns of spectral ut i l i -  

zation of the available light. Nevertheless, non-laminated 
microbial mats can be found, depending on environmental 
fluctuations. 

In the last few years, two books (COHEN et al . ,  1984; 
COHEN & ROSENBERG, 1989), and many articles have 
been published which extensively revise the structure, 
physiology, genetics and evolution of microbial mats 

(table 1). 
Today, microbial mats are confined to a restricted range 

of habitats including hypersaline and coastal marine envi- 
ronments (BAULD, 1984; VAN GEMERDEN et al . ,  1989), 
hot springs (CASTENHOLZ, 1984; JORGENSEN & 
NELSON, 1988) and alkaline lakes (BROCK, 1978). Micro- 
bial mats on deep-sea hydrothermal vents have also been 
studied. The emphasis on this particular community is of 
their chemosynthetic function (JANNASH, 1985; NELSON 
et al .  1989). 

Marine microbial mats are inundated periodically 
because they are separated from the open sea by a shallow 
barrier: dunes (Le. Baja California), salinas (Santa Pola, 
San Rafael, etc.), even the vegetation of mangrove trees 
[Matanzas, Cuba (R. Guerrero, unpublished; MARGULIS 
ef al., 1986)l. 

Some microbial mats can be placed in strange places, like 
those found in the slopes of the caldera in the Kilauea crater 
(Hawaii). They are small irregulary-shaped patches, not more 
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Table 1. Some important microbial mats of the world 

Location Kind Reference 

Yellowstone (Wyoming. USA) Hot spring CASTENHOLZ, 1984. 

New Zealand 

Iceland 

Hot spring 

Hot spring 

CASTENHOLZ, 1976. 

SCHWABE, 1960. 

Guaymas Basin (East Pacific) Deep-sea hydrothermal vents. BELKIN & JANNASCH, 1989. 

Galapagos Rift (Ecuador) Deep-sea hydrothermal vents. JANNASCH, 1985. 

Solar Lake (Sinai) Marine KRUMBEIN et a l ,  1977. 

Gulf of Aqaba (Sinai) Marine KRUMBEIN & COHEN, 1974. 

Shark Bay and 

Spencer Gulf (Australia) Marine 

Laguna Figueroa 

(Baja California, México) Marine 

Guerrero Negro 

(Baja California, México) Marine 

Sippewisset 

(Woods Hole, Mass., USA) Marine 

Hamei Mazor 

(Dead Sea, Israel) 

Meijendel (dune area) 

(The Netherlands) 

Mellum Islands 

(North Sea, Germany) 

BAULD, 1984. 

HORODYSKI, ct al. 1977. 

JAVOR & CASTENHOLZ, 1984 

GIBSON et al., 1984. 

Hypersaline sulfur spring OREN, 1989. 

Marine WINDER et al., 1989. 

Marine STAL et al., 1985. 

Orkney Islands (UK) Sheltered beaches HERBERT, 1985. 

Shackleford Banks (USA) Marine 

Ebro Delta (Spain) " Marine 

Canary Islands (Spain) Marine 

PAERL et al., 1989. 

MIR et u/., 1991. 

MENDEZ & VINUESA 

(personal communication). 

Soda Lake (Nevada, USA) Hypersaline lake OREMLAND & DES MARAIS, 1983. 

Hawaii (USA) Marine GUERRERO 

(personal communication) 

Cuba (Salina de Bido. Matanzas) Marine (protected by mangroves) MARGULIS et al., 1986. 

Saltern of "Saline de Giraud" 

(Camarge, France) Hypersaline pond CAUMETTE et al., 1988. 



than 10 cin in diameter. They are scattered on the walls of 

the crater, some times tilted more than 701> and presenting a 
different structure of those usually found in coastal zones. 

They are covered by a layer of black or dark-brown cyano- 

bacteria (M~r.sticqnc~la~l~rs Innzitlosus is dominani), clearly defi- 
ned purple and green layers (not more than 1 mm thick each 

one), and a basal layer of a yellowish, translucent gelatin, 
prohably constituted by polysaccharides. Thus, the black 

basal layer of anaerobic sulfate-reducers, which is almost 
universal in other microbial mats, is here absent. Al1 sulfide 
and water is coming from the vapors steaming interinittently 
from fissures in the volcano walls, and therefore the cycling 
of sulfur compounds is not complete, reminding us of the 

earliest pre-ecosystems (~inpublished data). 
The development of microelectrodes to measure chemical 

gradients (REVSBECH & JORGENSEN. 1985), micro-optic 
fibers for the study of spectral light distribution (PIERSON 
et al., 1987; JORGENSEN & DES MARAIS, 1988). and 

electron microscopy techniques (STAL et ul . .  1985; 
CAUMETTE, 1984; D'AMELIO et al .  1987), to better 

observe the structure and composition of these communities 

and the intra- and interspecific relationship have increased in 
the last few years our knowledge ofmicrobial mats. 

From an evolutionary point of view, microbial mats are 
of great interest because they are considered modern homo- 

logs of some precambrian stromatolites. Also, microbial 
mats found in modern hot springs provide examples of 
precambrian communities. The high temperature of hot 
spring waters in combination with high H2S concentrations 

or acidic conditions sometimes prevent the development of 
eukaryotes, facilitating the study of prokaryotic life. 

Chemical fossils (organic compounds whose structures, 
in part, have survived in the fossil record) have been the 
starting point for many geochemical studies on modern 

inicrobial mats. The aim of these studies has been to identify 
the types of microorganisms present in ancient sediment by 
examining the types of biochemical markers (PALMISANO 

t>t al.. 1988). Nevertheless. the complexity of these commu- 

nities makes it difficult to determine the microbial origins 
of specific compounds found in the mats. 

The role that mat-forming bacteria play on prokaryotic 
evolution (DES MARAIS, 1990), their role in laminated 

(STOLZ, 1990; KAZMERCZAK & KEMPE, 1990; Mc 
NAMARA. 1990) and non-laminated microbial comniuni- 
tics (CASTENHOLZ rt  al . .  1990), the description of new 
microorganisms (WAHLUND er al . ,  1991). and the elabo- 
ration of microcosms and models (GIANI et a l . ,  1989) are 

other topics published recently. 

Nevertheless, one of the questions of great interest that is 
not well understood is Iiow microorganisms living in micro- 

bial mats can survive under such extreme conditions as high 
light intensity, salinity, high temperatures and desiccation. 

Hyperscums, inucilages and polymer inclusions seem to 

play an important role here. Hyperscums have been descri- 

bed as crusted. buoyant, cyanobacterial mats often decime- 
ters thick. in which the organisms are so densely packed that 
free water is not evident. ZOHARY (1985) postulated that 

the role of these dry crusts is similar to that of resting spores 
or cysts of other organisms, providing the iririoculum for 
growth when conditions become favorable. 

Also, adhesion by mucilage can serves as a survival 

mechanism at least for cyanobacteria. The mechanisms for 

attachment that have been found to operate in this group of 
microorganism~, involve a change of the cell surface proper- 

ties (FALTON & SHILO, 1984). 
Less known is the role of biopolimers in the survival of 

microorganisms in microbial mats. The coinpounds that can 
be regarded as reserve material are usually polymers such 
as glycogen, poly-B-hydroxyalkanoates. cyanophycins and 

phycobiliproteins. Most of them are used by microorga- 

nisms as energy, carbon and nitrogen sources (JENSEN & 

SICKO, 1971 ; LAWRY & SIMON, 1982; GLAZER, 198 1). 
The total amount of these storage compounds accuin~ilated 

in the cell can be considerable . depending on the environ- 
mental conditions (ALLEN & HUTCHISON, 1980; MAS- 

CASTELLA, 199 1). 
During the last fifteen years, our group has been studying 

freshwater stratified lakes, where phototrophic prokaryotes 

often form multilayered planktonic microbial communities 
(MPM) (GUERRERO et crl., 1987; PEDRÓS-ALIÓ et u / . .  
1983). Microbial mats and MPM have been compared to 

ecosystems which depend on light as the primary energy 

source (GUERRERO & MAS, 1989). Phototrophic orga- 
nisms place themselves at different positions in these struc- 

tures according to the vertical distribution of the environ- 
mental factors. 

Also, we have studied the accumulation of poly-B-hydrox- 
yalkanoates inclusions in Chromatiaceae in natural habitats 

(ESTEVE al., 1990) and the characterization of predatory 
bacteria (GUERRERO eral. .  1986) and its dynamics contro- 
lling populations of Chromatiaceae in different karstic lakes 
(ESTEVE ' t  u l . ,  1992, and GAJU et al., i.n press). 

Since 1987, we have been studying multilayered benihic 
microbial communities in the Ebro Delta and microbial mats 
froin different locations in Spain (GUERRERO & DE WIT, 

1992). 



MICROBIAL MATS STUDIED IN THE 
IBERIAN PENINSULA 

A preliminary study of this kind of ecosystems has been 
made in Spain. Microbial mats can be found in different loca- 
tions of the Iberian Peninsula and Canary Islands (fig. l) .  
They can be found in sediments of inland saline lakes 
(GUERRERO & DE WIT, 1992) or in coastal areas close to 
salterns. Also, microbial mats have been located in other 
extreme environments such as sulfurous springs (Le. Font de 
la Puda, Banyoles), and in hot springs (i.e. Fumarolas del 
Teide. Sta. Cruz de Tenerife). 

The microbial mats we studied were located in the 
Mediterranean region of the Iberian Peninsula (fig. 1). All 
of them were situated close to saltern areas. The locations 
are "Salinas de San Rafael" (36046' N,  2036' O), "salinas 
de Cabo de Gata" (36O46' N, 2013' 0 )  in the province of 
Almería, "Salinas Bonmatí de Santa Pola" (38O10' N, 
0037' 0 )  in the province of Alicante, and the Ebro Delta, 
near Salinas de la Trinitat (40035' N, 0°40' E), 50 km 
south of Tarragona. Samples of microbial mats from San 
Rafael, Cabo de Gata and Ebro Delta were collected in 
April 1989. Samples from Santa Pola were collected in 
November 1989. 

Figure l .  Geogi-aphical disiributioii of sonir iiiici.obinl iiials i i i  tlie Iberiaii Peiiiiisula ;iiiil C'uiini.) Islniid\. 1 - .  Ebro Delrii (l'iiri-agona). 'I'enipo- 
rarily inundated sand flat. 2*. Salinas Bonmatí, Santa Pola (Alicante). 3*. Laguna de Cabo de Gata (Almería). 4*. Salinas de Cabo de Gata 
(Almería). 5*. Salinas de San Rafael (Almería). 61.. Fuente de Piedra (Málaga). Hypersaline lagoon. 7 t .  Sanguijuela (Albacete). Endorheic 
lagoon. 8 t .  Saladar (Albacete). Hypersaline lagoon 9 t .  Alcahozo (Ciudad Real). Hypersaline lagoon. lo f .  Cerro Mesado (Ciudad Real). Hyper- 
saline lagoon. 117. Las Yeguas (Ciudad Real). Lagoon (Mg 2+) 121.. Laguna de Tirez (Toledo). Hypersaline lagoon. 131.. Gallocanta (Zara- 
goza). Endorheic and hypersaline lagoon. 14t .  Chiprana (Zaragoza). Hgpersaline lagoon. 157. Carravalseca (Alava). Endorheic and hypersa- 
line lagoon. 16. Font de la Puda, Banyoles (Girona). Sulfurous spring. 17#. Fumarolas del Teide (Santa Cruz de Tenerife). Hot spring. 18#. El 
charco de la mareta, El Médano (Santa Cruz de Tenerife).Hypersaline pond. 19#. Playas de Sotavento, Península de Jandía (Fuerieventura). Sand 
flat. * This work. 1. C. Montes, 1990. #Sebastián Méndez and Pablo Vinuesa from Universidad de la Laguna, personal communication. 



Figui-e 2. View of differeiit ,atiipling site\ \tudied (A-E)  aiid croab-acctioiis ot niici-obial iiiats observed (E-J) .  
A )  and F)  Salinas de  San Rafael, Alrnería; B) and G)  Salinas de  Cabo de  Gata, Almería: C )  aiid H)  Laguna de Cabo de Gata, Almería; D) and 
1) Salinas Bonrnatí, Santa Pola, Alicante; E) and J)  Sand flats of Ebro Delta, Tarragona. 

Temperature, conductivity, and salinity of the water cove- 

ring the microbial mats were measured in siru using a 
Yellow Springs Instrument S-C-T meter model 33. The pH 
was measured with a micro-pH 2001 Crison pH-meter. 

Vertical stratification of the mats was studied by exami- 

ning 1 mm thick vertical slices from top to bottom by phase 

contrast microscopy and scanning electron microscopy. 
Horizontal cross-sections of the mats were used to charac- 

terize more accurately the different individual layers. For 

pigment determination, the different colored layers were 
separated manually and extracted with methanol. 

Sa1itzu.s de Suri Rufael (Almería) 
Two types of microbial mats were found in salinas San 

Rafael, on the shore of the ponds (fig. 2A). The water of the 

pond was brownish-red, presumably due to Halobacteria- 

ceae. A~.temia salinu was also present. One of these micro- 
bial mats had developed on white sediment (fig. 2F). Three 
distinct colored layers could be distinguished. The upper- 

most layer was brownish-white in color, with gypsum preci- 

pitates on its surface. Diatoms were dominant in this layer. 
The second layer was green and coccoid cyanobacteria and 
some unidentified filamentous cyanobacteria about 3 y m  in 
diameter were observed. The third layer was dimly pink, and 

below these pigmented layers the sediment was white. 
The second type of microbial mat found in salinas de  

San Rafael had two colored laminations. The upper layer 
was brown, and diatoms were the main phototrophic orga- 
nisms present. The second layer was green, and coccoid 
cyanobacteria and some filamentous cyanobacteria could 



inain photosynthetic pigment in al1 colored layers, and little 

amounts of bacteriochlorophyll u could be  detccted (fig. 5). 

Crrho c/c Gura (Almería) 

T h e  structure of rnicrobial mats from "Salinas del C a b o  

nity, in conjunction with high levels of evaporation, has lead 

Figure 3. I'lio~ofi:iphic pinte \lio\\iiif diltererii oi-giiii~\rii\ o1 ilic 

microbial mats studied. A )  Gjro.ti,qmu \p.. a diatom bclongiiig to the 
family Naviculaceae: B )  Amphoru c~,qgrc',yiu., a diatom belonging to 
the family Cymbellaceae: C) L j r ~ ~ h j u  oestucrr.ii filamentous cyano- 
bacteria with pigmented sheath; D) Mic~oc,olerts (~liror~oplusre.s. a 
sheathed filamentous cyanobacteria; E) 0.sc~illutor-iu sp; F) Spir.ulirrcr 
sp; G)  Clrr.ooc,oí.c.u.s sp. a coccoid cyanobacteria belonging to the 
Gloco<.upsu group: H) Chromariirnl sp.. a purple sulfur bacteria. 

be  observed .  Below this  l ayer  the sed iment  was black in 

color .  

T h e  absorption spectra of methanolic extracts of the diffe- I.-IELIIC 4. S C ; I I I I I I I I ~  C ~ C C I I . O I I  i i i ~ ~ ~ o ~ i ~ ; i l ~ l l  \lio\t 1112 , A )  .\11, I O ,  OI<>II\ 
rent colored laminations showed that chlorophyll a was  the c ~ l i r o ~ i o / ~ l u . ~ ~ ~ ~ \  and B )  S/~ii.rrliiiir \p. 



Wave Length (nm) 

Figure 5 .  Tlie red niid intrased absorptioii spectra 01' iiietlianolic 
extracts of differeiit pigmented laniinstions of inicsobial mats fro~n 
Salinas San Rafael. A) Microbial mat developed on white sediment. 
B) Microbial mat developed on black sediment. ( - - Upper 
layei: - 0  - green layer: -A d i m l y  pink layes). 

c,hococcrrs sp.). Some filamentous cyanobacteria 1i.e. Sl1i1.u- 

l ino sp. (figs. 3 F  and 4B)j was also observed. The methano- 

lic extracts showed Ihat chlorophyll a was Ihe main pigment 

present in this community (fig. 6B). 

In "Cabo de  Gata", wc also found microbial rnats on the 

shore of a lagoon (fig. 2C). These microbial mats were very 

thin and leathery in texture. Two  pigmented Iayers were 

observed (fig. 2H). The top layer was green, and the main 

phototrophic microorganism was Mir,r.o<,olrus sp. (fig. 3D 

and 4A).  Some filaments of 0.scillatoriu sp.  (fig. 3E) and 
L y t ~ g h y u  C I C ' S ~ U U ~ ~ ~  (fig. 3C) were also present. The second 
layer was redish-orange, and phototrophic anoxygenic 

bacteria could be detected. Below this layer the sediment 

was black. Chlorophyll cr was the main pigment present ir1 

Wave Length (nm) 

Figure 6. The red aiid iiifrared ahaorption spectra of iiiethanolic 
extracts of differeiit pigmented laniinations of microbial mats from 
Cabo de Gata. A )  Lagoon. B) Salinas. (- a - -Upper  layer; -0- 
green layer; -m r e d  layer). 

the green layer, and bacteriochlorophyll u was also detected 

in the second layer (fig. 6A). 

S n n f u  Pola (Alicante) 

Very thin microbial mats were Found on the shore of a 

pond in "Salinas Bonmatí de  Santa Pola" (fig. 2D).  The 

water of the pond had a salinity of 50 <)/,,, the tempera- 

ture was 17OC, and the pH was 8.0. 
These microbial mats had three different colored lamina- 

tions (fig. 21). The upper layer was yellowish-brown, and 
the dominant organisnis were diatoms (fig. 3A). The second 
layer was green in colour and the sheathed filamentous 

cyanobacteria, Mic.roc.01eu.s sp.  (fig. 3 D  and 4A) ,  was the 

main phototrophic bacteria present in this layer. The third 



Pigmenr concenuarion !)lg mm3 sedimení) 

Figure 7. Pigment distribution with depth (methanol extract) of 
microbial mats from Santa Pola. The different layers were extracted 
and the concentration of predominant pigments (in yg.mm-3 sedi- 
ment) were determined for each lamination. 
The distinct colored layers are designated by different symbols 
in the core diagram on the left ( yellow-brown layer, green 
layer, ES purple layer, black sediment). The pigment concen- 
tration from each layer is represented in the middle of the layer. 

layer, purple in color, was mainly rnade up of small motile 

Chrnrnatil~m sp. with sulfur globules inside. Below this last 

pigmented layer the sediment was black. 

The distribution of predominant pigments was determi- 
ned. Chlorophyll a was the main photosynthetic pigment in 

al1 layers, reaching its maximum concentration (1.6 p g m m -  

') into the green layer at a depth of 0.7 mm. Bacteriochlo- 
rophyll u was also present, arriving at its maximum concen- 

tration (0.5 p g  m m - 3  at a depth of 1.26 mm (fig. 7). 

Ebro Delta (Tarragona) 

In the Ebro Delta, in a temporarily inundated sand flat 
(fig. 2E), we found very well developed microbial mats 

vertically stratified into three colored laminations (fig. 25). 

In the top yellowish-brown layer, diatoms [¡.e. Nitrsckicc, 

Navic~l lu .  Amphor-u (fig. 3B)] and coccoid cyanobacteria 
(fig. 3G) were dominant. Tlie second layer, green in color, 

was composed mostly of Microcoleus chtoriop1a.sre.s (fig. 3D 

and 4A) and a few filaments of Lyngbya ur.stuar.ii (fig. 3C) 

and coccoid cyanobacteria. The third layer, was purple and 

it was basically composed of anoxygenic phototrophic 

bacteria (fig. 3H), but some filaments of Micioco1eii.s c,hto- 

noplastrs and coccoid cyanobacteria were also present. 

The principal pigment in both upper layers was chlo- 

rophyll u ,  which arrived at its maximum concentration (0.5 
pg.mm-') at  a depth of 1.1 mm in the green layer. Bacte- 
riochlorophyll a ,  predominantly found in anoxygenic photo- 

trophic bacteria, increased with depth, reaching its maxi- 
mum concentration (0.35 pg.mm-') at a depth of 2 mm, in 

Pigmenr concentrauon (pg mmhediment  ) 

Figure 8. Pigment distribution with depth (methanol extract) of 
microbial mats from Ebro Delta. The different layers were extrac- 
ted and the concentration of predominant pigments (in yg.mm-' 
sediment) were determined for each lamination. 
The distinct colored layers are designated by different symbols in 
the core diagram on the left ( yellow-brown layer, green 
layer, purple layer, black sediment). The pigment concen- 
tration from each layer is represented in the middle of the layer. 

the purple layer (fig. 8). Several species of non phototrophic 

bacteria ¡.e. spirochetes and other unidentified small rods 

and cocci werc observed. 

The vertical distribution of pigments from the Ebro Delta 

mats showed that microorganisms with chlorophyll a ,  like 

Mic,i.ocoleus c,htonopla.stes, had a wide distribution throug- 

hout the mat, although purple sulfur bacteria like Chroma- 

tium sp., whose principal photosynthetic pigment is bacte- 

riochlorophyll cr, had a narrow distribution in the mar. 

Al1 mats studied were predominantly made up of cyanobac- 

teria, with chlorophyll a as the main photosynthetic pigment. 

But in well-developed mats with a purple layer (¡.e. Santa Pola 
and Ebro Delta), bacteriochlorophyll a was also present. 

The highest concentration of main pigments analyzed was 

observed in Santa Pola mats, but in Ebro Delta mats the 

percentage of Bchl u versus total chlorophyll (= Chl a + 
Bchl a ) was higher (41.2 %) than in Santa Pola mats (23.8 

%), indicating that the contribution of anoxygenic photo- 

trophic bacteria to total primary production is more relevant 

in Ebro Delta mats. 

Pigment concentration was used as an estimation of 
phototrophic population biomass. Nevertheless, an increase 

in pigment concentration does not neccssarily indicate an 

increase in biomass. In stratified communities, microorga- 

nisms have to adapt to available light by increasing the 
amount of pigment content per cell to optimize the 
photosynthetic process (BROCH-DUE et al . ,  1978) 

Most of the filamentous cyanobacteria observed in these 

microbial mats were sheathed, ¡.e. Microcole~ls c,l~tonopla.s- 



tes and Lyngbya aestuarii. The sheaths play protective roles 
against dangers in the environment. An example of this 
function is the shielding ability of scytonemin, a yellow- 
brown pigment located in the sheath of several cyanobacte- 
ria such as Lyngbya sp., that protects them from high levels 
of solar radiation (GARCIA-PICHEL & CASTENHOLZ, 
1991). Lyngbya aestuarii located on the surface of the mats 
studied had more brownish coloration than the same orga- 
nisms situated below. 

Cyanobacterial mats which grow undisturbed for 
long periods may develop a regular lamination as the 
result of periodic changes in response to seasonal varia- 
tions of the environment. Species composition, density of 
photosynthetic organisms, and levels of excretion of 
polysaccharides by bacteria change seasonally in 
response to changes in salinity, water cover, Iight inten- 
sity and temperature. 

In hypersaline environments, the differences in composi- 
tion of microorganisms depends on salinity levels. Coccoid 
cyanobacteria are the main microorganisms in environments 
where salinity is high, for example in Cabo de Gata salinas. 
Moreover, the diversity increases when salinity levels decre- 
ase. In this case, filamentous cyanobacteria, mainly Micro- 
coleus sp., are the principal mat-building organisms, 
although coccoid cyanobacteria are also present. 

This kind of microbial mats (Santa Pola and Ebro Delta 
mats) had three well distinguished colored laminations, and 
the dominant microorganisms were similar. Diatoms were 
present only in well established mats, building a new layer 
on the surface of these stratified communities. 

In these photosynthetic communities, changes in struc- 
ture can be observed not only seasonally but also in terms 
of location. For example, in Ebro Delta mats different 
mat development states were found in only a few meters 
of distance. Filamentous cyanobacteria such as Spirulina 
sp. were dominant in young mats; however, Microcoleus 
sp. was the main phototrophic microorganism in the green 
layer of well-developed microbial mats (MIR et al., 
1991). 

Although extensive work has been done on the subject of 
these kinds of communities, there is still little known about 
productivity, the role of polymer inclusions in oxygenic and 
anoxygenic phototrophic bacteria, and the inter-and intras- 
pecific relationships among bacteria living on laminated 
structures, 

The nekt studies in the Ebto Delta will provide fiore 
information about these intetesting ecosystems developed in 
extreme erivironments. 
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