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ABSTRACT

Barriers to longitudinal river connectivity: review of impacts, study methods and management for Iberian fish 
conservation

River connectivity is essential for the correct functioning of freshwater ecosystems at all scales. However, it has not received 
the necessary attention by researchers, managers and policymakers until recent years. In this review, we recap the state of 
knowledge in river connectivity and its applications to conservation. We describe the particular characteristics of river connec-
tivity and summarise the effects of its interruption in different freshwater ecosystem elements. We then focus on the effects of 
the lack of segment connectivity in fish species and review the different methods developed to study it. The application of 
connectivity in freshwater fish conservation areas is also reviewed, which highlights the lack of studies on this subject. Finally, 
connectivity restoration is studied. The review addresses these topics in a general way and then focus on the Iberian Peninsula. 
The Iberian Peninsula is an interesting place to study river connectivity because it has one of the highest numbers of dams per 
square kilometre and a large number of endemic and endangered freshwater fish species. Despite the high number of fish 
species affected by water extraction and damming, river connectivity and its effect in Iberian freshwater fish populations have 
not been well studied. A small number of studies analyse the effect of small dams in nearby fish communities, but large-scale 
impact assessments are scarce. More connectivity analyses are needed to improve freshwater ecosystem conservation 
strategies. We conclude addressing some gaps in the knowledge of fragmentation and research opportunities in river connectiv-
ity and conservation
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RESUMEN

Barreras para la conectividad fluvial longitudinal: revisión de impactos, métodos de estudio y gestión para la conserva-
ción de los peces ibéricos

La conectividad de los ríos es esencial para asegurar el correcto funcionamiento de los ecosistemas fluviales a todas las 
escalas. Sin embargo, no ha recibido la atención necesaria por parte de los investigadores, los gestores y los políticos hasta 
hace pocos años. En esta revisión recapitulamos el estado del conocimiento de la conectividad fluvial y sus aplicaciones en 
conservación. Describimos las particularidades de la conectividad de los ríos y resumimos los efectos causados por la 
fragmentación en diferentes elementos de los ecosistemas fluviales. Después nos centramos en los efectos que la falta de 
conectividad tiene en las especies de peces y revisamos los distintos métodos desarrollados para estudiar la fragmentación. 
También exploramos la aplicación de los estudios de conectividad en la selección de áreas para la conservación de ríos. 
Por último se estudia la restauración de la conectividad fluvial. La revisión analiza estos temas de una forma general para 
luego centrarse en la península Ibérica. La península Ibérica es un lugar interesante para estudiar la conectividad fluvial 
ya que contiene uno de los mayores números de presas por kilómetro cuadrado y una gran cantidad de especies de peces 
dulceacuícolas endémicas y amenazadas. A pesar del gran número de especies de peces amenazadas por la extracción de 
agua y las presas, la fragmentación fluvial y sus efectos no han sido bien estudiados. Encontramos que se ha realizado un 
pequeño número de estudios sobre los efectos de presas pequeñas a escala local, pero los análisis a gran escala son escasos. 
Se necesitan más estudios de conectividad de ríos para mejorar las estrategias de conservación de los ecosistemas fluviales. 
Concluimos la revisión mostrando algunos huecos en el conocimiento de la fragmentación de ríos y comentando nuevas 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 

oportunidades de investigación en el estudio de la conectividad fluvial y su restauración.
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ABSTRACT

Barriers to longitudinal river connectivity: review of impacts, study methods and management for Iberian fish 
conservation

River connectivity is essential for the correct functioning of freshwater ecosystems at all scales. However, it has not received 
the necessary attention by researchers, managers and policymakers until recent years. In this review, we recap the state of 
knowledge in river connectivity and its applications to conservation. We describe the particular characteristics of river connec-
tivity and summarise the effects of its interruption in different freshwater ecosystem elements. We then focus on the effects of 
the lack of segment connectivity in fish species and review the different methods developed to study it. The application of 
connectivity in freshwater fish conservation areas is also reviewed, which highlights the lack of studies on this subject. Finally, 
connectivity restoration is studied. The review addresses these topics in a general way and then focus on the Iberian Peninsula. 
The Iberian Peninsula is an interesting place to study river connectivity because it has one of the highest numbers of dams per 
square kilometre and a large number of endemic and endangered freshwater fish species. Despite the high number of fish 
species affected by water extraction and damming, river connectivity and its effect in Iberian freshwater fish populations have 
not been well studied. A small number of studies analyse the effect of small dams in nearby fish communities, but large-scale 
impact assessments are scarce. More connectivity analyses are needed to improve freshwater ecosystem conservation 
strategies. We conclude addressing some gaps in the knowledge of fragmentation and research opportunities in river connectiv-
ity and conservation

Key words: connectivity indices, dam removal, Iberian Peninsula, population isolation, river connectivity, river conservation

RESUMEN

Barreras para la conectividad fluvial longitudinal: revisión de impactos, métodos de estudio y gestión para la conserva-
ción de los peces ibéricos

La conectividad de los ríos es esencial para asegurar el correcto funcionamiento de los ecosistemas fluviales a todas las 
escalas. Sin embargo, no ha recibido la atención necesaria por parte de los investigadores, los gestores y los políticos hasta 
hace pocos años. En esta revisión recapitulamos el estado del conocimiento de la conectividad fluvial y sus aplicaciones en 
conservación. Describimos las particularidades de la conectividad de los ríos y resumimos los efectos causados por la 
fragmentación en diferentes elementos de los ecosistemas fluviales. Después nos centramos en los efectos que la falta de 
conectividad tiene en las especies de peces y revisamos los distintos métodos desarrollados para estudiar la fragmentación. 
También exploramos la aplicación de los estudios de conectividad en la selección de áreas para la conservación de ríos. 
Por último se estudia la restauración de la conectividad fluvial. La revisión analiza estos temas de una forma general para 
luego centrarse en la península Ibérica. La península Ibérica es un lugar interesante para estudiar la conectividad fluvial 
ya que contiene uno de los mayores números de presas por kilómetro cuadrado y una gran cantidad de especies de peces 
dulceacuícolas endémicas y amenazadas. A pesar del gran número de especies de peces amenazadas por la extracción de 
agua y las presas, la fragmentación fluvial y sus efectos no han sido bien estudiados. Encontramos que se ha realizado un 
pequeño número de estudios sobre los efectos de presas pequeñas a escala local, pero los análisis a gran escala son escasos. 
Se necesitan más estudios de conectividad de ríos para mejorar las estrategias de conservación de los ecosistemas fluviales. 
Concluimos la revisión mostrando algunos huecos en el conocimiento de la fragmentación de ríos y comentando nuevas 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 

Figure 1.  The Iberian Peninsula, its river basins and large dams (> 1 hm3). Numbers point to the main Iberian river basins by area. 
1: Ebro River basin, 2: Duero River basin, 3: Tagus River basin, 4: Guadiana River basin, 5: Guadalquivir River basin. La península 
Ibérica, sus cuencas fluviales y sus grandes presas (> 1 hm3). Los números marcan las principales cuencas de acuerdo con su área. 
1: río Ebro, 2: río Duero, 3: río Tajo, 4: río Guadiana, 5: río Guadiana.

oportunidades de investigación en el estudio de la conectividad fluvial y su restauración.

Palabras clave: aislamiento de poblaciones, conectividad fluvial, conservación de ríos, derribo de presas, índices de conecti-
vidad, península Ibérica
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ABSTRACT

Barriers to longitudinal river connectivity: review of impacts, study methods and management for Iberian fish 
conservation

River connectivity is essential for the correct functioning of freshwater ecosystems at all scales. However, it has not received 
the necessary attention by researchers, managers and policymakers until recent years. In this review, we recap the state of 
knowledge in river connectivity and its applications to conservation. We describe the particular characteristics of river connec-
tivity and summarise the effects of its interruption in different freshwater ecosystem elements. We then focus on the effects of 
the lack of segment connectivity in fish species and review the different methods developed to study it. The application of 
connectivity in freshwater fish conservation areas is also reviewed, which highlights the lack of studies on this subject. Finally, 
connectivity restoration is studied. The review addresses these topics in a general way and then focus on the Iberian Peninsula. 
The Iberian Peninsula is an interesting place to study river connectivity because it has one of the highest numbers of dams per 
square kilometre and a large number of endemic and endangered freshwater fish species. Despite the high number of fish 
species affected by water extraction and damming, river connectivity and its effect in Iberian freshwater fish populations have 
not been well studied. A small number of studies analyse the effect of small dams in nearby fish communities, but large-scale 
impact assessments are scarce. More connectivity analyses are needed to improve freshwater ecosystem conservation 
strategies. We conclude addressing some gaps in the knowledge of fragmentation and research opportunities in river connectiv-
ity and conservation

Key words: connectivity indices, dam removal, Iberian Peninsula, population isolation, river connectivity, river conservation

RESUMEN

Barreras para la conectividad fluvial longitudinal: revisión de impactos, métodos de estudio y gestión para la conserva-
ción de los peces ibéricos

La conectividad de los ríos es esencial para asegurar el correcto funcionamiento de los ecosistemas fluviales a todas las 
escalas. Sin embargo, no ha recibido la atención necesaria por parte de los investigadores, los gestores y los políticos hasta 
hace pocos años. En esta revisión recapitulamos el estado del conocimiento de la conectividad fluvial y sus aplicaciones en 
conservación. Describimos las particularidades de la conectividad de los ríos y resumimos los efectos causados por la 
fragmentación en diferentes elementos de los ecosistemas fluviales. Después nos centramos en los efectos que la falta de 
conectividad tiene en las especies de peces y revisamos los distintos métodos desarrollados para estudiar la fragmentación. 
También exploramos la aplicación de los estudios de conectividad en la selección de áreas para la conservación de ríos. 
Por último se estudia la restauración de la conectividad fluvial. La revisión analiza estos temas de una forma general para 
luego centrarse en la península Ibérica. La península Ibérica es un lugar interesante para estudiar la conectividad fluvial 
ya que contiene uno de los mayores números de presas por kilómetro cuadrado y una gran cantidad de especies de peces 
dulceacuícolas endémicas y amenazadas. A pesar del gran número de especies de peces amenazadas por la extracción de 
agua y las presas, la fragmentación fluvial y sus efectos no han sido bien estudiados. Encontramos que se ha realizado un 
pequeño número de estudios sobre los efectos de presas pequeñas a escala local, pero los análisis a gran escala son escasos. 
Se necesitan más estudios de conectividad de ríos para mejorar las estrategias de conservación de los ecosistemas fluviales. 
Concluimos la revisión mostrando algunos huecos en el conocimiento de la fragmentación de ríos y comentando nuevas 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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ecological benefits of NSRR dam removal may 
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FNRs are a first and very important step in the 
conservation of freshwater ecosystems in the 
Iberian Peninsula. However, these reserves do 
not consider river connectivity between them or 
even within them, with some FNRs fragmented 
by dozens of small obstacles (Fig. 3). Due to 
this, the FNRs are not very efficient for the 
conservation of fish populations. A connected 
network of freshwater reserves needs to be 
protected to achieve effective conservation of 
river fauna. 

Moreover, Iberian Peninsula freshwater 
ecosystems face new threats, such as climate 
change, that will further disturb hydrological 
regimes and imperil fish species (Smith & 
Darwall, 2006; Hermoso & Clavero, 2011; 
Schewe et al., 2014). Iberian countries need to 
seriously engage in plans to protect the water 
supply while preserving freshwater ecosystems 
and their connectivity with cohesive national 
plans and sensible management that allows for 
conservation. In this way, Spain and Portugal 
will effectively protect their freshwater resources 
and species.

EFFECTS OF LONGITUDINAL CONNEC-
TIVITY RESTORATION

Although dam impacts on freshwater fish species 
are fairly well studied, upstream and downstream 
dam removal effects are far less analysed 
(Bednarek, 2001; Hart et al., 2002). The lack of 
pre- and post-dam removal ecological monitoring 
is the main reason for the scarcity of dam removal 
studies (Bednarek, 2001; Doyle et al., 2003, 2005; 
Rodeles et al., 2017). Dam removal is performed 
under the assumption that its effects will be 
positive, but long-term studies (> 5 years) on this 
topic are usually not found. Long-term monitoring 
is needed because ecological feedback loops may 
operate on longer time spans (Bellmore et al., 
2019), and some studies suggest that 3-4 years 
after dam removal, the biota is still in transition 
(Maloney et al., 2008; Poulos et al., 2014). 

Numerous short-term studies show positive 
effects, such as upstream recolonization and 
population increase of diadromous fish species 
(Fjeldstad et al., 2012; Hitt et al., 2012; Pess et 
al., 2014; Lasne et al., 2015; Birnie-Gauvin et al., 

barrier prioritization, read McKay et al. (2017).
River connectivity studies in Spain are scarce, 

although some research has been performed in 
Catalan basins regarding fishway efficiency and 
dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
developed and applied to a sub-basin of the Duero 
River basin (Rincón et al., 2017). In Portugal, 
longitudinal river connectivity indices have been 
developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
Numerous small dams and weirs in different river 
basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
informed decisions on dam removal. 

LONGITUDINAL CONNECTIVITY AND 
RIVER CONSERVATION

Conservation actions have generally been unsuc-
cessful in the case of freshwater biodiversity due 
to the special characteristics of freshwater ecosys-
tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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al., 2014; Lasne et al., 2015; Birnie-Gauvin et al., 

barrier prioritization, read McKay et al. (2017).
River connectivity studies in Spain are scarce, 

although some research has been performed in 
Catalan basins regarding fishway efficiency and 
dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
developed and applied to a sub-basin of the Duero 
River basin (Rincón et al., 2017). In Portugal, 
longitudinal river connectivity indices have been 
developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
Numerous small dams and weirs in different river 
basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
informed decisions on dam removal. 

LONGITUDINAL CONNECTIVITY AND 
RIVER CONSERVATION

Conservation actions have generally been unsuc-
cessful in the case of freshwater biodiversity due 
to the special characteristics of freshwater ecosys-
tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
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River basin (Rincón et al., 2017). In Portugal, 
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developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
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basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
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eon et al., 2006), with very few studies focusing 
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world (Geldmann et al., 2013). Nevertheless, 
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tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 
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terrestrial areas for conservation and the impor-
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rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
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ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
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connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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FNRs are a first and very important step in the 
conservation of freshwater ecosystems in the 
Iberian Peninsula. However, these reserves do 
not consider river connectivity between them or 
even within them, with some FNRs fragmented 
by dozens of small obstacles (Fig. 3). Due to 
this, the FNRs are not very efficient for the 
conservation of fish populations. A connected 
network of freshwater reserves needs to be 
protected to achieve effective conservation of 
river fauna. 

Moreover, Iberian Peninsula freshwater 
ecosystems face new threats, such as climate 
change, that will further disturb hydrological 
regimes and imperil fish species (Smith & 
Darwall, 2006; Hermoso & Clavero, 2011; 
Schewe et al., 2014). Iberian countries need to 
seriously engage in plans to protect the water 
supply while preserving freshwater ecosystems 
and their connectivity with cohesive national 
plans and sensible management that allows for 
conservation. In this way, Spain and Portugal 
will effectively protect their freshwater resources 
and species.

EFFECTS OF LONGITUDINAL CONNEC-
TIVITY RESTORATION

Although dam impacts on freshwater fish species 
are fairly well studied, upstream and downstream 
dam removal effects are far less analysed 
(Bednarek, 2001; Hart et al., 2002). The lack of 
pre- and post-dam removal ecological monitoring 
is the main reason for the scarcity of dam removal 
studies (Bednarek, 2001; Doyle et al., 2003, 2005; 
Rodeles et al., 2017). Dam removal is performed 
under the assumption that its effects will be 
positive, but long-term studies (> 5 years) on this 
topic are usually not found. Long-term monitoring 
is needed because ecological feedback loops may 
operate on longer time spans (Bellmore et al., 
2019), and some studies suggest that 3-4 years 
after dam removal, the biota is still in transition 
(Maloney et al., 2008; Poulos et al., 2014). 

Numerous short-term studies show positive 
effects, such as upstream recolonization and 
population increase of diadromous fish species 
(Fjeldstad et al., 2012; Hitt et al., 2012; Pess et 
al., 2014; Lasne et al., 2015; Birnie-Gauvin et al., 

barrier prioritization, read McKay et al. (2017).
River connectivity studies in Spain are scarce, 

although some research has been performed in 
Catalan basins regarding fishway efficiency and 
dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
developed and applied to a sub-basin of the Duero 
River basin (Rincón et al., 2017). In Portugal, 
longitudinal river connectivity indices have been 
developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
Numerous small dams and weirs in different river 
basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
informed decisions on dam removal. 

LONGITUDINAL CONNECTIVITY AND 
RIVER CONSERVATION

Conservation actions have generally been unsuc-
cessful in the case of freshwater biodiversity due 
to the special characteristics of freshwater ecosys-
tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 

Figure 2.  Location of the 135 Freshwater Natural Reserves created in Spain. They are mainly small headwater streams. Localización 
de las 135 Reservas Naturales Fluviales creadas en España. La mayoría son pequeños ríos de cabecera.
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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other different projects (LIFE Cipriber, 2015; 
LIFE Irekibai, 2016). However, there are usually 
no monitoring studies concerning the effects of 
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length of reconnected rivers is very short, so the 
ecological benefits of NSRR dam removal may 
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FNRs are a first and very important step in the 
conservation of freshwater ecosystems in the 
Iberian Peninsula. However, these reserves do 
not consider river connectivity between them or 
even within them, with some FNRs fragmented 
by dozens of small obstacles (Fig. 3). Due to 
this, the FNRs are not very efficient for the 
conservation of fish populations. A connected 
network of freshwater reserves needs to be 
protected to achieve effective conservation of 
river fauna. 

Moreover, Iberian Peninsula freshwater 
ecosystems face new threats, such as climate 
change, that will further disturb hydrological 
regimes and imperil fish species (Smith & 
Darwall, 2006; Hermoso & Clavero, 2011; 
Schewe et al., 2014). Iberian countries need to 
seriously engage in plans to protect the water 
supply while preserving freshwater ecosystems 
and their connectivity with cohesive national 
plans and sensible management that allows for 
conservation. In this way, Spain and Portugal 
will effectively protect their freshwater resources 
and species.

EFFECTS OF LONGITUDINAL CONNEC-
TIVITY RESTORATION

Although dam impacts on freshwater fish species 
are fairly well studied, upstream and downstream 
dam removal effects are far less analysed 
(Bednarek, 2001; Hart et al., 2002). The lack of 
pre- and post-dam removal ecological monitoring 
is the main reason for the scarcity of dam removal 
studies (Bednarek, 2001; Doyle et al., 2003, 2005; 
Rodeles et al., 2017). Dam removal is performed 
under the assumption that its effects will be 
positive, but long-term studies (> 5 years) on this 
topic are usually not found. Long-term monitoring 
is needed because ecological feedback loops may 
operate on longer time spans (Bellmore et al., 
2019), and some studies suggest that 3-4 years 
after dam removal, the biota is still in transition 
(Maloney et al., 2008; Poulos et al., 2014). 

Numerous short-term studies show positive 
effects, such as upstream recolonization and 
population increase of diadromous fish species 
(Fjeldstad et al., 2012; Hitt et al., 2012; Pess et 
al., 2014; Lasne et al., 2015; Birnie-Gauvin et al., 

barrier prioritization, read McKay et al. (2017).
River connectivity studies in Spain are scarce, 

although some research has been performed in 
Catalan basins regarding fishway efficiency and 
dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
developed and applied to a sub-basin of the Duero 
River basin (Rincón et al., 2017). In Portugal, 
longitudinal river connectivity indices have been 
developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
Numerous small dams and weirs in different river 
basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
informed decisions on dam removal. 

LONGITUDINAL CONNECTIVITY AND 
RIVER CONSERVATION

Conservation actions have generally been unsuc-
cessful in the case of freshwater biodiversity due 
to the special characteristics of freshwater ecosys-
tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 

Figure 3.  A close look at three Freshwater Natural Reserves (FNR) in the headwaters of the Duero River tributaries (blue lines). The 
FNRs are fragmented and isolated from one another by numerous small dams and weirs (red dots). Vista de tres Reservas Naturales 
Fluviales (FNR) en la cabecera de ríos afluentes del río Duero (líneas azules). Las FNR están fragmentadas y aisladas unas de otras 
por numerosas pequeñas presas y azudes (puntos rojos).
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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barrier prioritization, read McKay et al. (2017).
River connectivity studies in Spain are scarce, 

although some research has been performed in 
Catalan basins regarding fishway efficiency and 
dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
developed and applied to a sub-basin of the Duero 
River basin (Rincón et al., 2017). In Portugal, 
longitudinal river connectivity indices have been 
developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
Numerous small dams and weirs in different river 
basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
informed decisions on dam removal. 

LONGITUDINAL CONNECTIVITY AND 
RIVER CONSERVATION

Conservation actions have generally been unsuc-
cessful in the case of freshwater biodiversity due 
to the special characteristics of freshwater ecosys-
tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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the risk of exotic species invasion and disease 
dispersion in some rivers (Rahel, 2007; Stanley et 
al., 2007; Fausch et al., 2009; Zheng et al., 2009; 
Jackson & Pringle, 2010). 

In short, the results of connectivity restoration 
may depend on the type of river, dam, timescale 
and species involved. The new long-term ecosys-
tem equilibrium may not be the same as that of the 
pre-dam ecosystem (Bellmore et al., 2019). 
General conclusions of connectivity restoration 
cannot yet be made as dam removal studies are 
scarce, short-term and focused on one or few com-
ponents of the river ecosystem (Hart et al., 2002). 

In the Iberian Peninsula, few dams and weirs 
have fish ladders and, moreover, fish ladders are 
usually inefficient or are not well evaluated 
(Nicola et al., 1996; Santos et al., 2006; Ordeix et 
al., 2011; Aparicio et al., 2012; Rincón Sanz & 
Gortázar Rubial, 2016). To improve river connec-
tivity in the last two decades, dam removal has 
become a more prominent restoration technique 
in Spain, and more than 150 weirs have been 
removed under the National Strategy for River 
Restoration (NSRR, MAGRAMA, 2015) and 
other different projects (LIFE Cipriber, 2015; 
LIFE Irekibai, 2016). However, there are usually 
no monitoring studies concerning the effects of 
the removal of these dams on fish communities, 
even though the NSRR includes monitoring as a 
part of each restoration project. In addition, the 
length of reconnected rivers is very short, so the 
ecological benefits of NSRR dam removal may 
be small in comparison to the costs (Rodeles et 
al., 2017). However, a cost-benefit analysis of 6 
dam permeations was conducted to determine 

FNRs are a first and very important step in the 
conservation of freshwater ecosystems in the 
Iberian Peninsula. However, these reserves do 
not consider river connectivity between them or 
even within them, with some FNRs fragmented 
by dozens of small obstacles (Fig. 3). Due to 
this, the FNRs are not very efficient for the 
conservation of fish populations. A connected 
network of freshwater reserves needs to be 
protected to achieve effective conservation of 
river fauna. 

Moreover, Iberian Peninsula freshwater 
ecosystems face new threats, such as climate 
change, that will further disturb hydrological 
regimes and imperil fish species (Smith & 
Darwall, 2006; Hermoso & Clavero, 2011; 
Schewe et al., 2014). Iberian countries need to 
seriously engage in plans to protect the water 
supply while preserving freshwater ecosystems 
and their connectivity with cohesive national 
plans and sensible management that allows for 
conservation. In this way, Spain and Portugal 
will effectively protect their freshwater resources 
and species.

EFFECTS OF LONGITUDINAL CONNEC-
TIVITY RESTORATION

Although dam impacts on freshwater fish species 
are fairly well studied, upstream and downstream 
dam removal effects are far less analysed 
(Bednarek, 2001; Hart et al., 2002). The lack of 
pre- and post-dam removal ecological monitoring 
is the main reason for the scarcity of dam removal 
studies (Bednarek, 2001; Doyle et al., 2003, 2005; 
Rodeles et al., 2017). Dam removal is performed 
under the assumption that its effects will be 
positive, but long-term studies (> 5 years) on this 
topic are usually not found. Long-term monitoring 
is needed because ecological feedback loops may 
operate on longer time spans (Bellmore et al., 
2019), and some studies suggest that 3-4 years 
after dam removal, the biota is still in transition 
(Maloney et al., 2008; Poulos et al., 2014). 

Numerous short-term studies show positive 
effects, such as upstream recolonization and 
population increase of diadromous fish species 
(Fjeldstad et al., 2012; Hitt et al., 2012; Pess et 
al., 2014; Lasne et al., 2015; Birnie-Gauvin et al., 

barrier prioritization, read McKay et al. (2017).
River connectivity studies in Spain are scarce, 

although some research has been performed in 
Catalan basins regarding fishway efficiency and 
dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
developed and applied to a sub-basin of the Duero 
River basin (Rincón et al., 2017). In Portugal, 
longitudinal river connectivity indices have been 
developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
Numerous small dams and weirs in different river 
basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
informed decisions on dam removal. 

LONGITUDINAL CONNECTIVITY AND 
RIVER CONSERVATION

Conservation actions have generally been unsuc-
cessful in the case of freshwater biodiversity due 
to the special characteristics of freshwater ecosys-
tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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and species involved. The new long-term ecosys-
tem equilibrium may not be the same as that of the 
pre-dam ecosystem (Bellmore et al., 2019). 
General conclusions of connectivity restoration 
cannot yet be made as dam removal studies are 
scarce, short-term and focused on one or few com-
ponents of the river ecosystem (Hart et al., 2002). 

In the Iberian Peninsula, few dams and weirs 
have fish ladders and, moreover, fish ladders are 
usually inefficient or are not well evaluated 
(Nicola et al., 1996; Santos et al., 2006; Ordeix et 
al., 2011; Aparicio et al., 2012; Rincón Sanz & 
Gortázar Rubial, 2016). To improve river connec-
tivity in the last two decades, dam removal has 
become a more prominent restoration technique 
in Spain, and more than 150 weirs have been 
removed under the National Strategy for River 
Restoration (NSRR, MAGRAMA, 2015) and 
other different projects (LIFE Cipriber, 2015; 
LIFE Irekibai, 2016). However, there are usually 
no monitoring studies concerning the effects of 
the removal of these dams on fish communities, 
even though the NSRR includes monitoring as a 
part of each restoration project. In addition, the 
length of reconnected rivers is very short, so the 
ecological benefits of NSRR dam removal may 
be small in comparison to the costs (Rodeles et 
al., 2017). However, a cost-benefit analysis of 6 
dam permeations was conducted to determine 

FNRs are a first and very important step in the 
conservation of freshwater ecosystems in the 
Iberian Peninsula. However, these reserves do 
not consider river connectivity between them or 
even within them, with some FNRs fragmented 
by dozens of small obstacles (Fig. 3). Due to 
this, the FNRs are not very efficient for the 
conservation of fish populations. A connected 
network of freshwater reserves needs to be 
protected to achieve effective conservation of 
river fauna. 

Moreover, Iberian Peninsula freshwater 
ecosystems face new threats, such as climate 
change, that will further disturb hydrological 
regimes and imperil fish species (Smith & 
Darwall, 2006; Hermoso & Clavero, 2011; 
Schewe et al., 2014). Iberian countries need to 
seriously engage in plans to protect the water 
supply while preserving freshwater ecosystems 
and their connectivity with cohesive national 
plans and sensible management that allows for 
conservation. In this way, Spain and Portugal 
will effectively protect their freshwater resources 
and species.

EFFECTS OF LONGITUDINAL CONNEC-
TIVITY RESTORATION

Although dam impacts on freshwater fish species 
are fairly well studied, upstream and downstream 
dam removal effects are far less analysed 
(Bednarek, 2001; Hart et al., 2002). The lack of 
pre- and post-dam removal ecological monitoring 
is the main reason for the scarcity of dam removal 
studies (Bednarek, 2001; Doyle et al., 2003, 2005; 
Rodeles et al., 2017). Dam removal is performed 
under the assumption that its effects will be 
positive, but long-term studies (> 5 years) on this 
topic are usually not found. Long-term monitoring 
is needed because ecological feedback loops may 
operate on longer time spans (Bellmore et al., 
2019), and some studies suggest that 3-4 years 
after dam removal, the biota is still in transition 
(Maloney et al., 2008; Poulos et al., 2014). 

Numerous short-term studies show positive 
effects, such as upstream recolonization and 
population increase of diadromous fish species 
(Fjeldstad et al., 2012; Hitt et al., 2012; Pess et 
al., 2014; Lasne et al., 2015; Birnie-Gauvin et al., 

barrier prioritization, read McKay et al. (2017).
River connectivity studies in Spain are scarce, 

although some research has been performed in 
Catalan basins regarding fishway efficiency and 
dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
developed and applied to a sub-basin of the Duero 
River basin (Rincón et al., 2017). In Portugal, 
longitudinal river connectivity indices have been 
developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
Numerous small dams and weirs in different river 
basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
informed decisions on dam removal. 

LONGITUDINAL CONNECTIVITY AND 
RIVER CONSERVATION

Conservation actions have generally been unsuc-
cessful in the case of freshwater biodiversity due 
to the special characteristics of freshwater ecosys-
tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.

ACKNOWLEDGEMENTS

This research was performed thanks to the Ph.D. 
grants received from the Government of Navarra 
and the Asociación de Amigos de la Universidad 
de Navarra.

REFERENCES

ALEXANDRE, C.M. & P. R. ALMEIDA. 2010. 

2018) and fish community changes (Kanehl et al., 
1997; Maloney et al., 2008; Poulos et al., 2014; 
Kornis et al., 2015). Conversely, some studies do 
not show significant positive changes (Kareiva et 
al., 2000; Stanley et al., 2007; Quiñones et al., 
2014), while others point to short-term impacts in 
freshwater ecosystems (Stanley & Doyle, 2003). 

Exhaustive pre-removal studies are also 
essential as connectivity recovery may heighten 
the risk of exotic species invasion and disease 
dispersion in some rivers (Rahel, 2007; Stanley et 
al., 2007; Fausch et al., 2009; Zheng et al., 2009; 
Jackson & Pringle, 2010). 

In short, the results of connectivity restoration 
may depend on the type of river, dam, timescale 
and species involved. The new long-term ecosys-
tem equilibrium may not be the same as that of the 
pre-dam ecosystem (Bellmore et al., 2019). 
General conclusions of connectivity restoration 
cannot yet be made as dam removal studies are 
scarce, short-term and focused on one or few com-
ponents of the river ecosystem (Hart et al., 2002). 

In the Iberian Peninsula, few dams and weirs 
have fish ladders and, moreover, fish ladders are 
usually inefficient or are not well evaluated 
(Nicola et al., 1996; Santos et al., 2006; Ordeix et 
al., 2011; Aparicio et al., 2012; Rincón Sanz & 
Gortázar Rubial, 2016). To improve river connec-
tivity in the last two decades, dam removal has 
become a more prominent restoration technique 
in Spain, and more than 150 weirs have been 
removed under the National Strategy for River 
Restoration (NSRR, MAGRAMA, 2015) and 
other different projects (LIFE Cipriber, 2015; 
LIFE Irekibai, 2016). However, there are usually 
no monitoring studies concerning the effects of 
the removal of these dams on fish communities, 
even though the NSRR includes monitoring as a 
part of each restoration project. In addition, the 
length of reconnected rivers is very short, so the 
ecological benefits of NSRR dam removal may 
be small in comparison to the costs (Rodeles et 
al., 2017). However, a cost-benefit analysis of 6 
dam permeations was conducted to determine 

FNRs are a first and very important step in the 
conservation of freshwater ecosystems in the 
Iberian Peninsula. However, these reserves do 
not consider river connectivity between them or 
even within them, with some FNRs fragmented 
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will effectively protect their freshwater resources 
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TIVITY RESTORATION

Although dam impacts on freshwater fish species 
are fairly well studied, upstream and downstream 
dam removal effects are far less analysed 
(Bednarek, 2001; Hart et al., 2002). The lack of 
pre- and post-dam removal ecological monitoring 
is the main reason for the scarcity of dam removal 
studies (Bednarek, 2001; Doyle et al., 2003, 2005; 
Rodeles et al., 2017). Dam removal is performed 
under the assumption that its effects will be 
positive, but long-term studies (> 5 years) on this 
topic are usually not found. Long-term monitoring 
is needed because ecological feedback loops may 
operate on longer time spans (Bellmore et al., 
2019), and some studies suggest that 3-4 years 
after dam removal, the biota is still in transition 
(Maloney et al., 2008; Poulos et al., 2014). 

Numerous short-term studies show positive 
effects, such as upstream recolonization and 
population increase of diadromous fish species 
(Fjeldstad et al., 2012; Hitt et al., 2012; Pess et 
al., 2014; Lasne et al., 2015; Birnie-Gauvin et al., 

barrier prioritization, read McKay et al. (2017).
River connectivity studies in Spain are scarce, 

although some research has been performed in 
Catalan basins regarding fishway efficiency and 
dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
developed and applied to a sub-basin of the Duero 
River basin (Rincón et al., 2017). In Portugal, 
longitudinal river connectivity indices have been 
developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
Numerous small dams and weirs in different river 
basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
informed decisions on dam removal. 

LONGITUDINAL CONNECTIVITY AND 
RIVER CONSERVATION

Conservation actions have generally been unsuc-
cessful in the case of freshwater biodiversity due 
to the special characteristics of freshwater ecosys-
tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 

https://www.miteco.gob.es/es/agua/temas/delimitacion-y-restauracion-del-dominio-publico-hidraulico/Catalogo-Nacional-de-Reservas-Hidrologicas/normativa/
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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In the Iberian Peninsula, few dams and weirs 
have fish ladders and, moreover, fish ladders are 
usually inefficient or are not well evaluated 
(Nicola et al., 1996; Santos et al., 2006; Ordeix et 
al., 2011; Aparicio et al., 2012; Rincón Sanz & 
Gortázar Rubial, 2016). To improve river connec-
tivity in the last two decades, dam removal has 
become a more prominent restoration technique 
in Spain, and more than 150 weirs have been 
removed under the National Strategy for River 
Restoration (NSRR, MAGRAMA, 2015) and 
other different projects (LIFE Cipriber, 2015; 
LIFE Irekibai, 2016). However, there are usually 
no monitoring studies concerning the effects of 
the removal of these dams on fish communities, 
even though the NSRR includes monitoring as a 
part of each restoration project. In addition, the 
length of reconnected rivers is very short, so the 
ecological benefits of NSRR dam removal may 
be small in comparison to the costs (Rodeles et 
al., 2017). However, a cost-benefit analysis of 6 
dam permeations was conducted to determine 

FNRs are a first and very important step in the 
conservation of freshwater ecosystems in the 
Iberian Peninsula. However, these reserves do 
not consider river connectivity between them or 
even within them, with some FNRs fragmented 
by dozens of small obstacles (Fig. 3). Due to 
this, the FNRs are not very efficient for the 
conservation of fish populations. A connected 
network of freshwater reserves needs to be 
protected to achieve effective conservation of 
river fauna. 

Moreover, Iberian Peninsula freshwater 
ecosystems face new threats, such as climate 
change, that will further disturb hydrological 
regimes and imperil fish species (Smith & 
Darwall, 2006; Hermoso & Clavero, 2011; 
Schewe et al., 2014). Iberian countries need to 
seriously engage in plans to protect the water 
supply while preserving freshwater ecosystems 
and their connectivity with cohesive national 
plans and sensible management that allows for 
conservation. In this way, Spain and Portugal 
will effectively protect their freshwater resources 
and species.

EFFECTS OF LONGITUDINAL CONNEC-
TIVITY RESTORATION

Although dam impacts on freshwater fish species 
are fairly well studied, upstream and downstream 
dam removal effects are far less analysed 
(Bednarek, 2001; Hart et al., 2002). The lack of 
pre- and post-dam removal ecological monitoring 
is the main reason for the scarcity of dam removal 
studies (Bednarek, 2001; Doyle et al., 2003, 2005; 
Rodeles et al., 2017). Dam removal is performed 
under the assumption that its effects will be 
positive, but long-term studies (> 5 years) on this 
topic are usually not found. Long-term monitoring 
is needed because ecological feedback loops may 
operate on longer time spans (Bellmore et al., 
2019), and some studies suggest that 3-4 years 
after dam removal, the biota is still in transition 
(Maloney et al., 2008; Poulos et al., 2014). 

Numerous short-term studies show positive 
effects, such as upstream recolonization and 
population increase of diadromous fish species 
(Fjeldstad et al., 2012; Hitt et al., 2012; Pess et 
al., 2014; Lasne et al., 2015; Birnie-Gauvin et al., 

barrier prioritization, read McKay et al. (2017).
River connectivity studies in Spain are scarce, 

although some research has been performed in 
Catalan basins regarding fishway efficiency and 
dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
developed and applied to a sub-basin of the Duero 
River basin (Rincón et al., 2017). In Portugal, 
longitudinal river connectivity indices have been 
developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
Numerous small dams and weirs in different river 
basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
informed decisions on dam removal. 

LONGITUDINAL CONNECTIVITY AND 
RIVER CONSERVATION

Conservation actions have generally been unsuc-
cessful in the case of freshwater biodiversity due 
to the special characteristics of freshwater ecosys-
tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 % 
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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their effects in ecosystem services and suggest 
that permeations are beneficial to human well-be-
ing despite their costs (Rincón Sanz & Gortázar 
Rubial, 2016).

Rivers have not received enough attention 
from governments in the Iberian Peninsula, but 
this situation is starting to change. The European 
Union established the Water Framework Direc-
tive (WFD), stating that good quality rivers must 
be achieved, and restoration of river connectivity 
is one of its aims. The WFD requires the consid-
eration of fish communities when assessing the 
ecological quality of rivers (Council of the Euro-
pean Communities, 2000). Although Spain has 
not yet accomplished this objective and there is 
much work ahead, some large steps have been 
taken in this direction. While more organization 
and restoration monitoring are needed, the NSRR 
is a good starting point.

FUTURE NEEDS

Freshwater connectivity and conservation have 
gained attention in the last decades, as the 
profound impacts humans have on rivers are being 
acknowledged. However, the special characteris-
tics of rivers (dendritic structure, directionality, 
etc.) make extrapolation from terrestrial ecosys-
tems a poor method of study and conservation.

Thus, river connectivity conservation is a 
developing research field. The development of 
connectivity study methods has not been cohesive 
(Kemp & O’Hanley, 2010), so the creation of 
general connectivity frameworks with the ability to 
adapt to more local circumstances would help 
spread river fragmentation assessments. Until 
now, only a few Iberian river basins have complete 
longitudinal connectivity assessments (Rincón 
Sanz & Gortázar Rubial, 2016). The first step to 
achieve the evaluation of all river basins in the 
Iberian Peninsula and in the world is the develop-
ment of an inventory of all obstacles (dams, weirs, 
culverts, etc.) found in streams. In Spain that 
inventory is incomplete so more effort is needed to 
improve it. Each barrier has to be located and its 
passability assessed (height, fisway presence, etc., 
Rincón Sanz & Gortázar Rubial, 2016). With the 
complete barrier inventory river connectivity will 
be able to be assessed for all Iberian river basins. 

These river connectivity assessments could then be 
used to detect the most impacting dams, vulnerable 
river stretches, critical fluvial paths and the best 
streams for conservation.

To ensure the creation of effective river man-
agement and conservation plans, connectivity 
assessments need to accurately represent reality. 
However, connectivity indices are typically theo-
retical models built with as little as three variables 
(dam passability, dam location and segment 
length, Kemp & O’Hanley, 2010). Attempts at 
linking river basin connectivity models to popula-
tion or community dynamics are almost non-ex-
istent due to the difficulty of finding large-scale 
ecological data (Perkin & Gido, 2012).We need 
to validate existing connectivity indices with real 
world ecological data to ensure the benefits of 
river conservation and restoration actions. 

Finally, river connectivity needs to be consid-
ered in the selection of river segments for conser-
vation. Spanish FNRs are supposed to be well 
preserved areas. However, as showed in this 
review, there are many FNR divided in numerous 
isolated fragments due to weirs and dams. As 
stated before, there are different methods in the 
literature developed to include river connectivity 
in conservation reserves assessment and new ones 
could be developed to respond to specific needs. 

None of these developed methods for river 
connectivity assessment are useful if they are not 
applied in river conservation. There needs to be a 
better communication between scientists and 
decision-makers to ensure adequate ecological 
methods are applied in river management and 
conservation (Rodeles et al., 2017). This way we 
would effectively preserve river ecosystem 
services and biodiversity in a changing and 
increasingly humanized world.
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2018) and fish community changes (Kanehl et al., 
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Kornis et al., 2015). Conversely, some studies do 
not show significant positive changes (Kareiva et 
al., 2000; Stanley et al., 2007; Quiñones et al., 
2014), while others point to short-term impacts in 
freshwater ecosystems (Stanley & Doyle, 2003). 

Exhaustive pre-removal studies are also 
essential as connectivity recovery may heighten 
the risk of exotic species invasion and disease 
dispersion in some rivers (Rahel, 2007; Stanley et 
al., 2007; Fausch et al., 2009; Zheng et al., 2009; 
Jackson & Pringle, 2010). 

In short, the results of connectivity restoration 
may depend on the type of river, dam, timescale 
and species involved. The new long-term ecosys-
tem equilibrium may not be the same as that of the 
pre-dam ecosystem (Bellmore et al., 2019). 
General conclusions of connectivity restoration 
cannot yet be made as dam removal studies are 
scarce, short-term and focused on one or few com-
ponents of the river ecosystem (Hart et al., 2002). 

In the Iberian Peninsula, few dams and weirs 
have fish ladders and, moreover, fish ladders are 
usually inefficient or are not well evaluated 
(Nicola et al., 1996; Santos et al., 2006; Ordeix et 
al., 2011; Aparicio et al., 2012; Rincón Sanz & 
Gortázar Rubial, 2016). To improve river connec-
tivity in the last two decades, dam removal has 
become a more prominent restoration technique 
in Spain, and more than 150 weirs have been 
removed under the National Strategy for River 
Restoration (NSRR, MAGRAMA, 2015) and 
other different projects (LIFE Cipriber, 2015; 
LIFE Irekibai, 2016). However, there are usually 
no monitoring studies concerning the effects of 
the removal of these dams on fish communities, 
even though the NSRR includes monitoring as a 
part of each restoration project. In addition, the 
length of reconnected rivers is very short, so the 
ecological benefits of NSRR dam removal may 
be small in comparison to the costs (Rodeles et 
al., 2017). However, a cost-benefit analysis of 6 
dam permeations was conducted to determine 

FNRs are a first and very important step in the 
conservation of freshwater ecosystems in the 
Iberian Peninsula. However, these reserves do 
not consider river connectivity between them or 
even within them, with some FNRs fragmented 
by dozens of small obstacles (Fig. 3). Due to 
this, the FNRs are not very efficient for the 
conservation of fish populations. A connected 
network of freshwater reserves needs to be 
protected to achieve effective conservation of 
river fauna. 

Moreover, Iberian Peninsula freshwater 
ecosystems face new threats, such as climate 
change, that will further disturb hydrological 
regimes and imperil fish species (Smith & 
Darwall, 2006; Hermoso & Clavero, 2011; 
Schewe et al., 2014). Iberian countries need to 
seriously engage in plans to protect the water 
supply while preserving freshwater ecosystems 
and their connectivity with cohesive national 
plans and sensible management that allows for 
conservation. In this way, Spain and Portugal 
will effectively protect their freshwater resources 
and species.

EFFECTS OF LONGITUDINAL CONNEC-
TIVITY RESTORATION

Although dam impacts on freshwater fish species 
are fairly well studied, upstream and downstream 
dam removal effects are far less analysed 
(Bednarek, 2001; Hart et al., 2002). The lack of 
pre- and post-dam removal ecological monitoring 
is the main reason for the scarcity of dam removal 
studies (Bednarek, 2001; Doyle et al., 2003, 2005; 
Rodeles et al., 2017). Dam removal is performed 
under the assumption that its effects will be 
positive, but long-term studies (> 5 years) on this 
topic are usually not found. Long-term monitoring 
is needed because ecological feedback loops may 
operate on longer time spans (Bellmore et al., 
2019), and some studies suggest that 3-4 years 
after dam removal, the biota is still in transition 
(Maloney et al., 2008; Poulos et al., 2014). 

Numerous short-term studies show positive 
effects, such as upstream recolonization and 
population increase of diadromous fish species 
(Fjeldstad et al., 2012; Hitt et al., 2012; Pess et 
al., 2014; Lasne et al., 2015; Birnie-Gauvin et al., 

barrier prioritization, read McKay et al. (2017).
River connectivity studies in Spain are scarce, 

although some research has been performed in 
Catalan basins regarding fishway efficiency and 
dam passability (Ordeix et al., 2011; Solà et al., 
2011; Aparicio et al., 2012). A new connectivity 
index with asymmetric dam passability was 
developed and applied to a sub-basin of the Duero 
River basin (Rincón et al., 2017). In Portugal, 
longitudinal river connectivity indices have been 
developed to aid in river connectivity restoration 
(Branco et al., 2012, 2014; Segurado et al., 2013, 
2015). However, major river basin connectivity 
assessments have not been performed yet. 
Numerous small dams and weirs in different river 
basins are not inventoried, which prevents com-
prehensive longitudinal connectivity analyses 
(Rincón Sanz & Gortázar Rubial, 2016; Rodeles 
et al., 2017). We need to know the full extent of 
Iberian river fragmentation to understand the 
degree of the threat faced by our freshwater fish 
species. It will also serve as the starting point for 
river connectivity restoration, helping to make 
informed decisions on dam removal. 

LONGITUDINAL CONNECTIVITY AND 
RIVER CONSERVATION

Conservation actions have generally been unsuc-
cessful in the case of freshwater biodiversity due 
to the special characteristics of freshwater ecosys-
tems and the lack of attention they receive (Dudg-
eon et al., 2006), with very few studies focusing 
on fluvial systems (Correa Ayram et al., 2015). 

Reserves have been a popular conservation 
technique for terrestrial ecosystems around the 
world (Geldmann et al., 2013). Nevertheless, 
there are few specifically freshwater protected 
areas (Bower et al., 2015); river segments are 
protected tangentially by being part of a protected 
land ecosystem, which does not guarantee effec-
tive protection (Saunders et al., 2002; Hermoso et 
al., 2015; Miranda & Pino-Del-Carpio, 2016). 

Numerous studies exist about the selection of 
terrestrial areas for conservation and the impor-
tance of landscape connectivity to reserves (Cor-
rea Ayram et al., 2015). However, river structure 
makes it impossible to extrapolate terrestrial 
conservation techniques to freshwater ecosys-

tems (Moilanen et al., 2008; Hermoso et al., 
2015). The selection of isolated river stretches for 
protection is not as useful as the selection of land 
ecosystems because rivers are affected by the 
upstream and downstream drainage network, the 
riparian zones and the surrounding land (Pringle, 
2001; Bower et al., 2015; Hermoso et al., 2015). 
River connectivity is essential for the well-being 
of freshwater ecosystems, and recently, some 
studies have included river connectivity as a 
variable in the selection of freshwater reserves 
(Hermoso et al., 2012, 2017). However, the 
exclusive conservation of freshwater ecosystems 
and the design of protected areas have received 
little effort, and only a small fraction of scientific 
papers are about freshwater connectivity and its 
application to fluvial conservation (Galpern et al., 
2011; Hermoso et al., 2011, 2017; Correa Ayram 
et al., 2015; Erös et al., 2018). 

Adequate methods are needed for the selec-
tion of conservation areas, but because freshwater 
ecosystems have been less studied, there are no 
specific tools for the scientific selection of 
reserves. Software used in terrestrial ecosystems, 
such as ZONATION and Marxan, is being adapt-
ed for the design of river reserves (Moilanen et 
al., 2008; Hermoso et al., 2011; Hermoso et al., 
2017), as well as methods for the analysis of 
connectivity, such as graph theory (Erös et al., 
2011; Fullerton et al., 2011).

Ideally, a freshwater protected area should 
cover the total length of a river to ensure the 
adequate conservation of all ecosystems. Rivers 
are heavily exploited along their courses and may 
cross different countries in their travel to the 
oceans, so this approach would find the resistance 
of governments; therefore, partial solutions are 
being proposed (Saunders et al., 2002). River 
connectivity needs to play an essential role in the 
selection of river reserves as it will determine 
their conservation efficacies (Hermoso et al., 
2015, 2017).

To ensure the conservation of near pristine, 
non-impacted river stretches, Spain declared 
135 Freshwater Natural Reserves (FNR) 
scattered throughout the country (Fig. 2). The 
first 82 FNRs were registered in 2015, followed 
by another batch of 53 reserves in 2017 (Minis-
terio para la Transición Ecológica, 2017). These 

O’Hanley, 2010) and telemetry and fish surveys 
(Ovidio & Philippart, 2002) to software simula-
tions such as FishXing (Bourne et al., 2011) and 
statistical models (Kemp & O’Hanley, 2010). 

With the passability values of the obstacles, 
different indices can be applied to determine the 
connectivity of a stream or river basin, taking into 
account the position of each dam in the network. 
The simplest ones are score-and-ranking type 
procedures, which rank obstacles according to 
their passability, but they produce ineffective 
solutions to improve connectivity as they assess 
the passability of individual barriers and ignore 
their cumulative impacts (O’Hanley & Tomber-
lin, 2005).

Recently, graph theory, a method frequently 
used in landscape functional connectivity (Pas-
cual-Hortal & Saura, 2006; Galpern et al., 2011), 
has been adapted to river networks in different 
connectivity studies (Fullerton et al., 2011). 
Graph networks commonly represent freshwater 
systems as edges (river segments) connected by 
nodes (intersections or barriers). By including 
obstacle location inside the river network in the 
analysis, graph theory allows the calculation of 
cumulative impacts of dams, providing an 
efficient way to estimate the different sections 
affected by obstacles (Erös et al., 2011; McKay et 
al., 2013; Branco et al., 2014; Rincón et al., 
2017). Graph theory has not been widely used, 
but it is gaining more attention and could be used 
for numerous analyses, such as species connec-
tivity, habitat loss and gain models (Segurado et 
al., 2015), dam removal selection (McKay et al., 
2013; Branco et al., 2014) or colonization and 
extinction-risk models (Van Looy et al., 2013). 
Other indices also use dam location inside the 
river network to analyse cumulative impacts on 
longitudinal connectivity (Cote et al., 2009; Grill 
et al., 2014). Some indices are developed to 
analyse diadromous fish movements, as they 
migrate from the river mouth upstream (Cote et 
al., 2009; McKay et al., 2013), while others are 
used to assess potamodromous movements inside 
the river (Cote et al., 2009; O’Hanley et al., 2013; 
Diebel et al., 2015). 

In general, connectivity indices use segment 
length or water volume as a measure of river 
habitat availability (Cote et al., 2009; McKay et 

al., 2013; Branco et al., 2014; Grill et al., 2015). 
However, other segment habitat characteristics 
may reflect biota needs better than length or water 
volume: a small segment of high-quality habitat 
(according to the species requirements) could be 
more beneficial than a larger segment of poor 
quality habitat. Different connectivity indices 
include both river length and habitat quality for 
both a large variety of fish species (Grill et al., 
2014; Diebel et al., 2015; Maitland et al., 2016) 
or a single species (Rodeles et al., 2019) to adapt 
their results to fish habitat requirements. 

The result of these indices is usually a 
percentage that represents the connectivity for 
one obstacle or for the whole river basin (Cote et 
al., 2009; Kemp & O’Hanley, 2010; McKay et 
al., 2013).

Connectivity evaluation methods are often 
used to model potential connectivity improve-
ments (Branco et al., 2014). For example, dam 
removal is a useful tool to improve river 
connectivity, but if it is not carefully planned, 
restoration benefits would be suboptimal 
(Rodeles et al., 2017). Optimization tools that 
rank dams by their effects on network connec-
tivity and their removal cost have been devel-
oped to maximize river connectivity improve-
ments. O’Hanley & Tomberlin (2005) devel-
oped a optimization method using integer 
programming techniques that produced better 
results than scoring and ranking procedures, 
and applied it in Washington State (USA). 
Afterwards, the optimization method was 
refined and updated with different techniques 
(mixed integer linear programming, probability 
chains, etc.) to include different fish species and 
spatial scales (O’Hanley & Tomberlin, 2005; 
O’Hanley, 2011; O’Hanley et al., 2013; Null et 
al., 2014; King & O´Hanley, 2016; King et al., 
2017). Null et al. (2014) used another optimiza-
tion method to analyse trade-offs between 
hydropower generation, water supply and river 
connectivity in California (USA). The same 
tools described above can be used to choose the 
locations for new dams, analysing the river 
network to select the least impacting sites for 
river basin connectivity. However, as far as we 
know, these studies do not exist yet. For a deep 
review on the methods selected for connectivity 

ple, when mortality slightly exceeds natality). In 
any case, river network connectivity is one of the 
main drivers in the distribution and range size of 
freshwater fish species (Carvajal-Quintero et al., 
2019) so river fragmentation has direct conse-
quences on the distribution and persistence of 
freshwater fish species, according to the degree of 
connectivity between populations and the size of 
the habitats affected.

In the Iberian Peninsula, the profound degra-
dation of hydrologic connectivity described in 
the above has led to the extinction or dramatic 
decline of migrant fish species (Atlantic sturgeon 
Acipenser sturio L., 1758, Atlantic salmon 
Salmo salar L., 1758, European eel Anguilla 
anguilla (L., 1758), etc.), the isolation of endem-
ic species and the spread of exotic species (Pren-
da et al., 2006). However, studies of dam 
impacts and river connectivity loss in fishes are 
insignificant, despite affecting up to 60 % of 
Iberian freshwater fish species (Maceda-Veiga, 
2013). Atlantic salmon has lost up to 86 % of its 
historically accessible stream length (Álvarez et 
al., 2003), completely disappearing from the 
Duero River basin (Valente & Maia, 2001) and 
decreasing dramatically in the Cantabrian coast 
(Álvarez et al., 2001; Sanz Azcárate et al., 2018). 
Sturgeon was completely extirpated from Iberian 
river basins (Morais, 2008), the European eel has 
lost more than 80 % of its historic distribution 
range (Clavero & Hermoso, 2015), and other 
migrant species such as the sea lamprey (Petro-
myzon marinus L., 1758) are declining (Nicola et 
al., 1996). 

The majority of endemic Iberian fish species 
are economically unimportant potamodromous 
fishes, and the effects of dams in their popula-
tions are unknown. The scarcity of information 
on the biology and conservation status of these 
species and the absence of river fragmentation 
studies make it difficult to start adequate conser-
vation and management plans. Due to the strong 
speciation in the different river basins, fish 
species are naturally strongly isolated, and some 
of them only appear in single river basins or 
sub-basins, which makes them even more vulner-
able to additional connectivity alterations and 
habitat degradation (Aparicio et al., 2000; Clave-
ro et al., 2010). 

Studies of dam impacts were conducted in 
different river basins scattered throughout the 
territory. A study on the Tagus basin showed that 
recruitment of brown trout (Salmo trutta L., 
1758) after the construction of a hydropower dam 
decreased significantly, showing that dams, even 
small ones, have effects downstream (Almodóvar 
& Nicola, 1997). Dams also promote exotic fish 
invasion and fish community homogenization 
along the Guadiana River (Clavero & Hermoso, 
2011). Cold water discharge from a newly 
constructed dam caused a shift from a mixed fish 
community to a salmonid one (Miranda et al., 
2012). Another study in Catalonia (north-east of 
the Iberian Peninsula) indicates that fish extinc-
tions are more likely in small, degraded and regu-
lated stream segments (Aparicio et al., 2000). 
Impacted stretches on Catalan basins also seem to 
have poorer habitat structure, lower fish abun-
dance, fish length and total fish weight, and 
different species composition, with an effect that 
accumulates downstream (Benejam et al., 2014). 
Conversely, other studies did not find significant 
effects of small barriers on fish communities in 
Spain (Alexandre & Almeida, 2010) or Portugal 
(Santos et al., 2006). 

METHODS TO STUDY LONGITUDINAL 
RIVER CONNECTIVITY

As hydrological connectivity has received grow-
ing attention in the last two decades (Pringle, 
2001, 2003; Wiens, 2002), different methods 
have been developed to assess connectivity and 
the best solutions to improve it. 

To analyse river connectivity, obstacle passa-
bility must be assessed first. Passability may be 
defined as the proportion of fish that are able to 
pass a barrier or the number of days the barrier is 
passable. Due to the unique characteristics of each 
barrier and river reach, assessing passability is 
usually a difficult task. The simplest methods use 
a binary passability value (0-1): a barrier is passa-
ble or not (Zheng et al., 2009). In numerous cases, 
barriers are partially passable depending on differ-
ent factors, such as obstacle height, species, size, 
swimming ability and flow of water (Kemp & 
O’Hanley, 2010). There are multiple ways to 
assess passability, from expert criteria (Kemp & 

worldwide, river fragmentation is one of the most 
important threats facing river ecosystems (Gido 
et al., 2016; Kemp, 2016). Currently, nearly 50 % 
of the freshwater ecoregions of the world and 48 %
of global river volume are affected by large- and 
medium-sized dams (Liermann et al., 2012; Grill 
et al., 2015). 

As barriers interrupt the natural downstream 
flow of matter and energy, they cause numerous 
different impacts in freshwater fishes, derived 
from altered hydrological and sediment regimes 
(Bunn & Arthington, 2002; Kondolf et al., 2014). 
In addition, the mere loss of connectivity between 
two adjacent segments could have negative 
effects on freshwater organisms, especially fishes 
(Gido et al., 2016). The impossibility of move-
ment through a barrier can affect breeding and 
feeding migrations and recolonization processes, 
leading to biodiversity losses. Analysing the 
effects of one or multiple obstacles on fish 
species or communities may often be a difficult 
task due to the masking influence of natural envi-
ronmental variability or other local and regional 
impacts (Cumming, 2004; Wang et al., 2011; 
Gido et al., 2016). 

Fishes with different life cycles react differ-
ently to the loss of connectivity. Fragmentation of 
a river basin is more concerning for diadromous 
fish populations. Diadromous species are the 
ones that move between the rivers and the ocean 
to complete their life cycles. The effect of an 
impassable dam on these species is obvious: the 
obstacle obstructs the migration of fishes, result-
ing in the loss of the whole habitat upstream of 
the barrier. If habitat loss is great enough, the 
diadromous population affected will decline or 
even disappear from the river basin (Duncan & 
Lockwood, 2001; Sheer & Steel, 2006; Fukushi-
ma et al., 2007; Limburg & Waldman, 2009; 
Lucas et al., 2009; Hitt et al., 2012; Nieland et al., 
2015; Segurado et al., 2015). Even if the obsta-
cles are partially passable, negative effects 
remain as migrant fauna spend more time and 
energy trying to pass the barriers, which leads to 
lower spawning success, physical damage, easier 
capture and disease spread (Gregory et al., 2002; 
March et al., 2003; Garcia de Leaniz, 2008). 

The effect of dams in potamodromous species 
(i.e. fishes constricted to freshwater water that 

conduct migrations of different spatial scale 
along the rivers) is more obscure, as they lose 
migration paths, but stream segments usually 
have all types of habitat needed by these fishes. 
Some potamodromous fish species also perform 
large migrations to spawn, which are affected by 
dam presence (Lucas & Batley, 1996; Branco et 
al., 2017). 

Fish species are structured in meta-popula-
tions (Fagan, 2002; Gido et al., 2016). A 
meta-population comprises different populations 
distributed over patches on a heterogeneous land-
scape connected by dispersal movements. In 
meta-population theory, local extinctions are 
offset by recolonizations from other patches, and 
population genetics depends on the genetic char-
acteristics of the colonizers (Levins, 1968; 
Hanski & Gilpin, 1991). 

In hierarchical dendritic linear systems, such 
as rivers, there is only one path between sites, and 
dispersers must pass through all middle points 
before reaching a destination (Fagan, 2002). 
When a dam or other barrier is constructed, a path 
between populations can be completely blocked 
to dispersers, which can lead to loss of genetic 
diversity, genetic drift, population decline and 
eventually, extirpation of the isolated population 
(Morita & Yamamoto, 2002; Meldgaard et al., 
2003; Yamamoto et al., 2004; Wofford et al., 
2005; Morita et al., 2009). These effects can be 
magnified if populations are isolated in smaller 
areas (MacArthur & Wilson, 1967) 

Different studies have shown a positive 
connection between larger river segments and 
higher freshwater fish biodiversity (Bain & Wine, 
2010; Heino et al., 2015) and a negative relation-
ship between dam presence and species richness 
upstream (Dodd et al., 2003; Nislow et al., 2011; 
Wang et al., 2011; Perkin & Gido, 2012; Sá-Ol-
iveira et al., 2015). Other studies do not show 
differences in fish communities between 
segments separated by dams (Cumming, 2004; 
Santos et al., 2006). However, even if population 
changes have not been noticed yet, species extir-
pation from an isolated river segment cannot be 
ruled out as there may be delayed long-term 
effects (Ewers & Didham, 2006). This is called 
“extinction debt” and arises from delayed 
responses of populations to an impact (for exam-

alone (Rincón Sanz & Gortázar Rubial, 2016).
The larger river basins of the Iberian Peninsula 

are Ebro, Duero, Tagus, Guadiana and Guadalqui-
vir. These basins are heavily fragmented. For 
example, the Spanish Duero basin (78 900 km2) 
has 145 large- and medium-sized dams (22 in the 
main stem) and more than 3200 small dams and 
weirs (Confederación Hidrográfica del Duero, 
2007). The total river length of the basin is 13 539 
km, so, on average, there is a barrier every 4 km. 
The Ebro basin (85 000 km2) has 299 large dams 
and 1818 weirs and small dams (Confederación 
Hidrográfica del Ebro, 2009) in 12 495 km of 
rivers and an average of one dam per 6 km. This 
has profound effects in river ecosystems.

In this review, we will summarize in four 
sections the state of the knowledge of i) the effects 
of river fragmentation in freshwater fishes, ii) the 
methods developed to calculate connectivity, iii) 
the studies of river conservation and iv) the 
studies about dam removal and connectivity resto-
ration. Each section will start with a general study 

and then they will focus on river fragmentation 
studies on the Iberian Peninsula. Finally, we will 
comment on understudied areas and research 
opportunities in freshwater connectivity conserva-
tion and management. Longitudinal connectivity 
(i.e. connectivity along river course) is the most 
studied form of connectivity, so this review will 
focus on the effects of the disruption of this 
dimension of hydrological connectivity (structural 
and functional) in fish species.

IMPACTS OF LONGITUDINAL CONNEC-
TIVITY FRAGMENTATION IN FRESH-
WATER FISHES

Large dams, weirs and culverts are the main infra-
structures causing river connectivity fragmenta-
tion, but their effects on freshwater ecosystems 
depend on network location, number, passability 
(i.e. degree of permeation of a barrier measured 
with different methods), etc. With more than 45 
000 large dams and countless small obstacles 

WHAT IS HYDROLOGICAL CONNEC-
TIVITY?

Connectivity can be defined as the degree to 
which a landscape facilitates or impedes the 
movement of organisms among resource patches 
(Taylor et al., 1993). Landscape connectivity is a 
fundamental factor in determining the distribu-
tion of species and is an essential concept in 
meta-population biology and landscape ecology 
(Pringle, 2003).

Although connectivity has been addressed in 
numerous land studies, hydrological connectivity 
presents some challenges derived from the pecu-
liar structure of rivers (Fausch et al., 2002; 
Wiens, 2002). River ecosystems are hierarchical-
ly organised dendritic networks, with functional 
habitats nested across scales. This structure 
creates isolated populations at smaller spatial 
scales than in other ecosystems (Fagan, 2002; 
Campbell Grant et al., 2007; Crook et al., 2015). 
Movement of organisms inside the river is 
constrained to following the network branches, 
and a single barrier can divide a river segment 
into two totally isolated fragments (Campbell 
Grant et al., 2007). Moreover, the flow of water is 
unidirectional, running from the headwaters to 
the river mouth, transporting sediments, nutrients 
and organisms. This means that despite the lack 
of spatial overlap, downstream ecosystems are 
affected by processes occurring upstream: the 
flow of water controls hydrologic connectivity 
(Fullerton et al., 2010). 

Hydrological connectivity can be defined as 
the water-mediated transfer of matter, energy or 
organisms within or between elements of the 
hydrologic cycle (Pringle, 2001). Hydrological 
connectivity is composed of interactive pathways 
along one temporal and three spatial dimensions: 
longitudinal (from headwaters to river mouth), 
lateral (from riverine and riparian habitats to 
floodplains) and vertical (from riverine to 

groundwater, Pringle, 2001). There are also two 
types of connectivity (Branco et al., 2014): struc-
tural connectivity refers to the physical relation-
ships between structural elements (Segurado et 
al., 2013), while functional connectivity is 
defined as the response of the biological elements 
(community, populations) to landscape structure 
(Tischendorf & Fahrig, 2000). 

Hydrological connectivity is essential to the 
ecological integrity of freshwater ecosystems, 
and reduction or enhancement of this property 
can have major negative environmental effects 
(Moss, 2000; Pringle, 2003; Kondolf et al., 2014; 
Grill et al., 2015; Schmutz & Moog, 2018; 
Seliger & Zeiringer, 2018). However, until 
recently, freshwater connectivity and conserva-
tion have not received the attention they deserve 
from scientists and administrators. Less than 20 
% of papers published on three important conser-
vation journals between 2011 and 2015 focused 
on freshwater ecosystems (Di Marco et al., 2017), 
while only 9 % of connectivity studies applied to 
conservation between 2000 and 2013 studied 
fluvial ecosystems (Correa Ayram et al., 2015). 
Moreover, the research is highly skewed towards 
developed countries, mainly the United States, 
and diadromous species such as salmonids (Stan-
ley et al., 2007; Bourne et al., 2011; Keefer et al., 
2012; Brown et al., 2013). 

In this review we will focus on the Iberian 
Peninsula. The Iberian Peninsula is a very inter-
esting place to study hydrologic connectivity for 
two reasons: first, it has one of the highest 
percentages (> 70 %) of endemic freshwater fish 
species in Europe (Clavero et al., 2004; Reyjol et 
al., 2007; Maceda-Veiga, 2013). Second, Spain is 
one of the countries with the highest dam density 
per square kilometre in the world (Vidal-Abarca 
Gutiérrez & Suárez Alonso, 2013), while Portu-
gal also has a large number of dams (Antunes et 
al., 2016; Fig. 1). According to some estimations 
there are at least 26 000 river obstacles in Spain 
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